Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus.
نویسندگان
چکیده
In patients with non-insulin-dependent diabetes mellitus (NIDDM) and matched control subjects we examined the interrelationships between in vivo nonoxidative glucose metabolism and glucose oxidation and the muscle activities, as well as the immunoreactive protein and mRNA levels of the rate-limiting enzymes in glycogen synthesis and glycolysis, glycogen synthase (GS) and phosphofructokinase (PFK), respectively. Analysis of biopsies of quadriceps muscle from 19 NIDDM patients and 19 control subjects showed in the basal state a 30% decrease (P < 0.005) in total GS activity and a 38% decrease (P < 0.001) in GS mRNA/microgram DNA in NIDDM patients, whereas the GS protein level was normal. The enzymatic activity and protein and mRNA levels of PFK were all normal in diabetic patients. In subgroups of NIDDM patients and control subjects an insulin-glucose clamp in combination with indirect calorimetry was performed. The rate of insulin-stimulated nonoxidative glucose metabolism was decreased by 47% (P < 0.005) in NIDDM patients, whereas the glucose oxidation rate was normal. The PFK activity, protein level, and mRNA/microgram DNA remained unchanged. The relative activation of GS by glucose-6-phosphate was 33% lower (P < 0.02), whereas GS mRNA/micrograms DNA was 37% lower (P < 0.05) in the diabetic patients after 4 h of hyperinsulinemia. Total GS immunoreactive mass remained normal. In conclusion, qualitative but not quantitative posttranslational abnormalities of the GS protein in muscle determine the reduced insulin-stimulated nonoxidative glucose metabolism in NIDDM.
منابع مشابه
Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-insulin-dependent diabetes mellitus subjects. Biochemical and molecular mechanisms.
To determine whether glycogen synthase (GS) activity remains impaired in skeletal muscle of non-insulin-dependent diabetes mellitus (NIDDM) patients or can be normalized after prolonged culture, needle biopsies of vastus lateralis were obtained from 8 healthy nondiabetic control (ND) and 11 NIDDM subjects. After 4-6 wk growth and 4 d fusion in media containing normal physiologic concentrations ...
متن کاملImpaired insulin-stimulated expression of the glycogen synthase gene in skeletal muscle of type 2 diabetic patients is acquired rather than inherited.
To examine whether defective muscle glycogen synthase (GYS1) expression is associated with impaired glycogen synthesis in type 2 diabetes and whether the defect is inherited or acquired, we measured GYS1 gene expression and enzyme activity in muscle biopsies taken before and after an insulin clamp in 12 monozygotic twin pairs discordant for type 2 diabetes and in 12 matched control subjects. Th...
متن کاملDecreased insulin responsiveness of glucose uptake in cultured human skeletal muscle cells from insulin-resistant nondiabetic relatives of type 2 diabetic families.
To investigate the contribution of inherited biochemical defects to the peripheral insulin resistance of type 2 diabetes, we studied cultured skeletal muscle from 10 insulin-resistant nondiabetic first-degree relatives of type 2 diabetic families and 6 control subjects. Insulin stimulation of glucose uptake and glycogen synthesis was maximal in myoblasts. Insulin-stimulated glucose uptake (fold...
متن کاملRegulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes.
Defective regulation of gene expression may be involved in the pathogenesis of type 2 diabetes. We have characterized the concerted regulation by insulin (3-h hyperinsulinemic clamp) of the expression of 10 genes related to insulin action in skeletal muscle and in subcutaneous adipose tissue, and we have verified whether a defective regulation of some of them could be specifically encountered i...
متن کاملThe role of glycogenin in glycogen synthesis and non-insulin dependent diabetes mellitus.
The principal defect in the majority of non-insulin dependent diabetes mellitus (NIDDM) patients is impaired glycogenesis in skeletal muscle in response to insulin. Glycogen synthesis is initiated by transfer of glucosyl residues to the tyrosine OH at position 194 of a 37KD primer protein named glycogenin (1,2). While the enzymatic details of the first glucose addition have not yet been determi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 91 6 شماره
صفحات -
تاریخ انتشار 1993